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ABSTRACT

Several methods for studying predictive capability and sensitivity have been applied to fire
models, but with limited utility. These range from explicit evaluation of the equations used in
simple models such as ASET to evaluation of complex models from numerous computer runs
of a model along with usually quantitative comparison to laboratory experiments. This paper
presents a discussion of the issues involved in conducting an evaluation of a complex room fire
model. Examples using currently available room fire models are presented.

Analytical models for predicting fire behavior have been evolving since the 1960's. During this
time, the completeness of the models has grown. In the beginning, the focus of these efforts was
to describe in mathematical language the various phenomena which were observed in fire growth
and spread. These separate representations have typically described only parts of a fire. When
combined though, they can create a complex computer code capable of giving an estimate of the
expected effects of a fire based upon given input parameters. Analytical models have progressed
to the point of providing predictions of fire behavior with an accuracy suitable for most engineer-
ing applications. Two obvious questions arise concerning the use of these models for engineering
calculations:

. How good do the inputs to the model need to be (How do changes in the model inputs
affect the model outputs)?

. How good is the output of model (How close are the actual conditions to those predicted
by the model)?

To address the former question, this paper presents a summary of the issues involved in
conducting a sensitivity analysis of a complex room fire model. Examples using one fire model
are provided. For the latter question, some examples are presented illustrating comparisons for
both simple correlations and complex fire models. Both of these discussion highlight the
strengths and weaknesses of our current level of understandmg of evaluation of complex fire
models. More complete investigations are available'?

SENSITIVITY ANALYSIS

A sensitivity analysis is a study of how changes in model parameters affect the results generated
by the model. Model predictions may be sensitive to uncertainties in input data, to the level of
rigor employed in modeling the relevant physics and chemistry, and to the accuracy of numerical
treatment. Among the purposes for conducting a sensitivity analysis are to determine:

. the important variables in the models,
. the computationally valid range of values for each input variable, and
. the sensitivity of output variables to variations in input data.

Conducting a sensitivity analysis of a complex fire model is a difficult task. Many models require
extensive input data and generate predictions for numerous output variables over a period of
simulated time. Several methods of sensitivity analysis have been applied to fire models, but
most have had limited utility. These range from explicit evaluation of the equations used in
simple models such as ASET" to pointwise evaluation of complex models from numerous
computer runs of the model®. The technique chosen for use will be dependent on the objectives of
the study, the required results, the resources available and the complexity of the model being
analyzed.
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Earlier efforts: Khoudja® has studied the sensitivity of an early version of the FAST model with a
fractional factorial design involving two levels of 16 different input parameters. The statistical
design, taken from the texts by Box and Hunter’, and Daniel® reduced the necessary model runs
from more than 65000 to 256 by studying the interactions of input parameters simultaneously.
His choice of values for each input parameter represented a range for each parameter. His
analysis of the FAST model (a precursor to the CFAST model used for this paper) showed a
particular sensitivity to the inclusion of conduction in the calculations and lesser, though
consistent sensitivities to the number of compartments included in a simulation and the ambient
temperature. Without the inclusion of surface thermophysical properties, this model treats
surfaces as adiabatic for conductive heat transfer. Thus, this consistent sensitivity should be
expected. Sensitivity to changes in thermal properties of the surfaces were not explored.

For a steady-state model of a liquid pool fire, Ndubizu’, et. al. used a Fourier Amplitude
Sensitivity Test to study the relative importance of model inputs. With appropriate
transformation of input parameters, the model outputs define a periodic function of the
transformed inputs. This resulting function is then Fourier analyzed with the Fourier coefficients
directly corresponding to the sensitivity of each input parameter.

The ASTM guide for evaluating the predictive capability of fire models® identifies model
sensitivity analysis as an important part of model evaluation and identifies two methods which
may be applied to perform a sensitivity analysis — a partial differential method and a response
surface method. Further details are left to other sources.

Application to a current fire model: Fire growth models are typically based on a system of
ordinary differential equations of the form

% - f(zp.7) 2(1=0) = gz, (1)

where z (z,, z,, ..., Z,) 1s the solution vector for the system of equations (for example, mass,
temperature, or volume) and p (p,, p,, --- P,) i a vector of input parameters (for example, room
area, room height, heat release rate) and 7 is time®. The solutions to these equations are, in
general, not known explicitly and must be determined numerically. To study the sensitivity of
such a set of equations the partial derivatives of an output z; with respect to an input p, (for
j=1,...,m and I=1,...,n) are examined. '

Although numerous scenarios could be chosen for study, a sin(gle one was used in this paper to
illustrate the analysis of a single complex fire model, CFAST". To obtain a complete picture of a
model's sensitivity, a number of scenarios representing the entire range of the model would have
to be studied. The scenario chosen includes a range of phenomena which can be simulated with
this model. The building geometry included four rooms on two floors with horizontal, vertical,
and mechanical vents connecting the rooms and Venting to the outdoors. The fire source in one of
the rooms on the lower floor is a medium growth rate t* fire'' chosen to simulate a mattress fire'*.

Sensitivity to small changes in model inputs: To investigate the sensitivity of the model, a
number of simulations were conducted varying the input parameters for CFAST about this base
scenario. Both small (+10%) and larger (up to an order of magnitude) variations for selected
inputs were studied. Varying most of the inputs by small amounts had little effect on the model
outputs.

An example, figure (1), shows the results of a 10% change in room volume (effected by changing
the floor area) on several model outputs. The figure shows a somewhat constant relative
difference for the changes as a function of time. Ignoring the effects at very early times where
upper layer volume and pressure are very nearly zero, the graph shows that temperature and
pressure are less sensitive to changes in the volume of the fire room since the 10% change in
room volume led to smaller relative changes in layer temperature and room pressure for all times.
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Upper layer volume can be considered
neutrally sensitive (a 10% change in
room volume led to about a 10% change 0.2 ¢ Ity aelk i
in layer volume). Further, this implies '\ """""

that there is negligible effect on layer i
|
\
i

Upper Layer Volume {rf)
~— Pressure (Pa)

interface height. This is consistent with
both experimental observations in open
compartment room fires" and analytical
solutions for single compartment steady-
state fires'. In essence, this implies that
reasonable uncertainties in room
dimensions would have little effect on
the results predicted by the model for this
scenario. As suggested by Iman and
Helton', an average relative difference
could be used to characterize the model 02 ' ' 1 ' -
sensitivity for comparing individual ¢ 10 20 300 400 500 600
inputs and outputs. Time ®

04t

Residuals (Variant-Base)/Base

Sensitivity to larger changes in model
inputs: To investigate the effects of much
larger changes in the inputs, a series of
simulations where the inputs were varied
from 0.1 to 4.0 times the base value was
conducted. Simulations changing the heat
release rate (HRR) inputs are shown in
figure 1. Each set appears as families of
curves with similar functional forms. This
indicates that multiples of the HRR have
a simple monotonic effect on the layer
temperatures. Again, it may be possible )
to describe the sensitivity with a single 0 100 200 300 400 500 600 0 100 200 300 400 500 600
characteristic number. The choice of heat Time (6) Time (s)
release is particularly interesting since it
appears to be one of the inputs to the
model which has a greater effect on the
model outputs than other inputs.

Figure 1. An example of time dependent sensitivity
of fire model outputs to a 10% change in room
volume for a single room fire scenario
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of individual data points representing Figure 2. Layer temperatures and volumes in several
more than 100,000 single-time values for rooms resulting from variation in heat release rate for
layer temperature. For each room, a a four-room growing fire scenario

regression fit to all the data for that room

overlays the locus. The temperature curves for both upper and lower layer temperature in all four
rooms (figure 2) show a strong functional dependence on HRR. Even for the wide variation in
inputs, the HRR provides a simple predictor of the temperature in the rooms. In addition, this
relationship allows calculation of the sensitivity of the temperature outputs to the HRR inputs as
a simple slope of the resulting correlation between HRR and temperature. Figure 4 shows this
sensitivity for the four-room scenario studied. Except for relatively low HRR, the upper layer
temperature sensitivity is less than 1 K/kW and usually below 0.2 K/kW. Not surprisingly, the
layer that the fire feeds directly is most sensitive to changes. The lower layer in the fire room and
all layers in other rooms have sensitivities less than 0.2 K/kW. This implies, for example, that if
the HRR for a | MW fire is known to within 100 kW, the resulting uncertainty in the calculation
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Evaluating sensitivity by single values: s

Many phenomena of interest in fire modeling
are transient events that are best represented
as time history curves. Examples are HRR,
gas temperature, smoke density, and CO
concentration. To evaluate the sensitivity of =
multiple outputs, it would be desirable to o FEEEE 1 ‘ 0
have a single number to characterize each
output. For the example scenario used in this
paper, several choices are available. From
figure (1), an average relative difference )
could be used. Again from figure 4, an temperature in several rooms for a four-room
average sensitivity calculated from a simpler 8rowing fire scenario

model (in this case, a simple correlation)

could be used. Other possibilities include

time to critical events (for example, 10
flashover), average value, or peak value.

Upper Layer Temperature (C)

Heat Release Rate (kW) Heat Release Rate (kW)

Figure 4 presents the effect of both HRR 08 7
and vent opening (in the fire room) on the
upper layer temperature. In this figure,
actual model calculations, normalized to the
base scenario values are indicated by circles
overlaid on a surface grid generated by a
spline interpolation between the data points.
At high HRR and small vent openings, the
fire becomes oxygen limited and the
temperature trails off accordingly, but for
the most part, the behavior of the model is
monotonic in nature. Although more
laborious, the approaches used to calculate
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Temperature Sensitivity (K/kw)

sensitivities for single variable dependencies -0.2 T . |
illustrated earlier are thus equally applicable 0 1000 2000 3000
to multivariate analyses. Heat Release Rate (kW)

From the surface, it is clear that HRR has Figure 4. Sensitivity of temperature to heat release
more of an effect on the peak temperature  rate for a four-room growing fire scenario

than does the vent width. Until the fire

becomes oxygen limited, the trends evident in the surface are consistent with expectations —
temperature goes up with rising HRR and down with rising vent width. The effects are not, of
course, linear with either HRR or vent opening. Plume theory and typically used calculations for
estimating upper layer temperature in a single room with a fire'®"” suggest that the dependence is

on the order of ¢*° for HRR and A/h for the vent opening where A is the area of the vent and 4 is

the height of the vent. Although these correlations are based on a simple analysis of a single
room fire, the dependence suggested is similar to that illustrated in figure 4.

EVALUATION OF THE PREDICTIVE CAPABILITY OF FIRE MODELS

Several researchers have studied the level of agreement between computer fire models and real-
scale fires’. These range from comparisons using simple correlations'
The comparisons made to date are mostly qualitative in nature. The level of agreement between
the models and experiment is typically reported as "favorable,” “satisfactory,” “well predicted,”
“successful,” or “reasonable.” This section provides an overview of some comparisons made as
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Figure 3. Comparison of heat release rate and layer

to intricate field models'.
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part of a program to better understand the
evaluation process in concert with
research to provide a level of
quantification to the comparisons.

N

Prediction of flashover: A number of
simple correlations and the CFAST model
were used to simulate a range of
geometries and fire conditions to predict
the development of the fire up to the point
of flashover. The simulation represent a
range of compartment sizes from 8 m’ to
1327 m’, with ceiling height varying from
2.4 mto 12.2 m and vent openings from
10% to 100% of the length of the short
wall (plus a “standard” door, 0.76 m in
width). For most of the simulations, the
surface lining material was gypsum
wallboard, 12.7 mm in thickness,
consistent with the values used in the
correlations. A simple constant fire size
was varied until the calculated upper layer
temperature reached 600 °C at the end of Figure 5. Effect of both heat release rate and vent
the simulation. For some simulations, the opening size on upper layer temperature for a four-
surface linings ranged from aluminum to  room growing fire scenario.

a highly insulating foam and the

fire source diverged from the
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sources, most notably the work of
Deal and Beyler'®. In addition, it
includes predictions from a current
generation zone fire model,
CFAST that will be discussed in
more detail below.
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Figure 6. Comparison of correlations, CFAST predictions,
and experimental data for the prediction of flashover in a
compartment fire.

As with some of the experimental data defining flashover as an upper layer temperature reaching
600 °C, many experimental measures were reported as peak values rather than minimum values
necessary to achieve flashover. Thus, ideally all the predictions should provide a lower bound
for the experimental data. Indeed, this is consistent with the graph — the vast majority of the
experimental observations lie above the correlations and model predictions. For a considerable
range in the ratio A,/ Aﬁz, the correlations of Babrauskas, Thomas, and McCaffrey, Quintiere,
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and Harkelroad provide nearly identical estimates of the minimum energy required to produce
flashover. The estimates of Higglund yields somewhat higher estimates for values of Al Alh
greater than 20.

The results from the CFAST model for this single compartment scenario provide similar results
to the experiments and the correlations for most of the range of A,/ A/h. For small values of
A/ A/h, the CFAST values rise somewhat above the values from the correlations. These small
values of A/ A/h result from either very small compartments (small A;) or very large openings
(large A/h), both of which stretch the limits of the assumptions inherent in the model. For very
small compartments, radiation from the fire to the compartment surfaces becomes more
important, enhancing the conductive heat losses through the walls. However, the basic two-zone
assumption may break down as the room becomes very small. For very large openings, the
calculation of vent flow via an orifice flow coefficient approach is likely inaccurate. Indeed, for
such openings, this limitation has been observed experimentally'’. Still, the estimates are close
to the ranges provided by the correlations which also diverge at very small values of A/ A/lh.

Perhaps most significant in these comparisons is that all the simple correlations provide estimates
similar to the CFAST model and all the models are consistent with a wide range of experimental
data. For this simple scenario, little is gained with the use of the more complex models. For more
complicated scenarios, the comparison may not be as simple.

Other comparisons: Arguably the most frequent question asked about a fire is "How hot did it
become?” Temperature in the rooms of a structure is an obvious indicator to answer this
question. Peak temperature, time to peak temperature, or time to reach a chosen temperature
tenability limit are typical values of interest. Papers by Peacock, Jones, and Bukowski?, Beard'®,
Deal and Beyler'®, and Reneke et.al.?° are illustrative.

Figure 7 shows a comparison of measured

and predicted upper layer temperature for Single Room Test with Furniture Three Roam Test with Corridor
) - 1000
several tests studied’. For the single-room . = el

tests, predicted temperatures show
obvious similarities to the measured
values. Peak values occur at similar
times with comparable rise and fall for
most comparisons. Peak values are
typically higher for upper layer
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Systematic deviations exist for the /[ 4
remaining three data sets. Differences e Oy
between model predictions and

experimental measurements change
monotonically over time (rising for the
three-room test and falling for the four-
rooms tests. Modeling of heat conduction
(losing too much or too little heat to the
surfaces) or lack of modeling of leakage (rooms are presumed perfectly sealed unless vents are
included to simulate leakage) may account for the trends.

Figure 7. Comparison of measured and predicted
upper layer temperatures for several tests. (Numbers
indicate comparable rooms in the test structure.)

In general, upper layer temperatures predicted by the model are higher than experimental mea-
surements, with the differences ranging from -46 to 230 °C. Conversely, the lower layer
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temperature is somewhat lower for the model than for the experiments (-60 °C to 5 °C). Pre-
suming conservation of energy (an underlying assumption in all fire models), these observations
are consistent. Limitations inherent in the model also account partially for these trends. In the
current version of CFAST, energy exchange in the lower layer is only by mixing or convection
from surfaces. Adding radiative exchange to the lower layer would reduce the upper layer
temperature and increase the lower layer temperature. Layer interface position is primarily
affected by entrainment by the fire or at vents. Plume entrainment in CFAST is based on the
work of McCaffrey on circular plumes in relatively small spaces. For large fires in small spaces
where the fire impinges on the ceiling (such as the single room tests with wall burning) or very
small fires in large spaces (such as atria), these correlations may not be as valid.

Several areas which need additional research are apparent in order to be able to perform broader
analyses:

] Presenting the results of a sensitivity analysis — For a complex fire model with m inputs
and n outputs, a complete sensitivity analysis will result in a matrix of mxn time series. It
is unlikely that this much information will be of general use. It may be appropriate to
develop threshold values for important outputs to alert the model user of particularly
sensitive effects for a given test case.

o Calculating sensitivity functions for a complex fire model — In order to apply analytical
techniques for sensitivity analysis of a complex fire model, the sensitivity equations need
to be included in the equation set solved directly by the model. Even though it is
desirable to obtain an overall picture of model performance, the broad range of
application of current models demonstrates that whatever range of study is chosen,
applications outside this envisioned range will continue to be of interest.

L] Statistical treatment of the data - presentation of the differences between model
predictions and experimental data to date have been intentionally simple. With a
significant base of data to study, appropriate statistical techniques to provide a true
measure of the “goodness of fit” should be investigated.

L Experimental measurements — Most interest in applying current generation models is in a
non-residential setting. Little experimental data is available for these scenarios.
Measurement of leakage rates, room pressure, or profiles of gas concentration are atypical
in experimental data. These measurements are critical to assessing the accuracy of the
underlying physics of the models or of the models ability to predict toxic gas hazard.

CONCLUSIONS

This paper has presented a number of alternatives for evaluating both simple and complex room
fire models. For the models and test cases examined, the heat release rate is dominant in
determining the behavior of the models. Other model inputs, including room volume and vent
size have lesser effects on a range of predicted ouputs.

Comparison of model prediction with available experimental measurements show agreement and
differences which are understandable given the limitations inherent in the models and
experiments. Although a range of applications have been reported in the literature, to use the
models with assurance for any purpose, the user must understand the underlying science,
assumptions, and limitations inherent in the models and from this decide the applicability for a
particular application. Such an understanding allows the trained professional to assure use of the
models where applicable does not exceed the capabilities of a particular model.
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Discussion

Patrick Pagni: We decided that comparison with data was the major task for the computational
models for this meeting. While sensitivity analyses are interesting, I don’t think they accomplish
that goal. Let me give you a negative comparison since you didn’t think there were any out
there. We have compared the results of CFAST for the temperature in the upper layer in a long,
steady heat release rate experiment and we find consistent overprediction of the upper layer
temperature. In the comparisons you showed us today, I think I saw the same trend. I cannot be
sure since you didn’t dwell on the temperature comparison, but could you tell me if that was the
case?

Richard Peacock: Overprediction of temperature by CFAST is fairly classic. We are aware of
that and need to look at it. We suspect it’s related to two things: one is plume entrainment,
which drives practically everything else in the model; and the second is mixing between the
layers, because going along with this overprediction of upper layer temperature is an
underprediction of lower layer temperature. That’s somewhat forced by the mass balance. The
dichotomy of overprediction of upper layer temperature and underprediction of lower layer
temperature is somewhat forced by mass and energy balance in a compartment. It’s something
that we are addressing.

Patrick Pagni: T am very happy that you agree with the phenomenon. Let me give you another
mechanism. We think there may be something wrong with the heat transfer algorithm at the
wall. By running several different programs, we thought we were able to determine that the
plume entrainment was correct, but there was something wrong with the wall heat transfer. The
paper will appear in the forthcoming issue of the Fire Safety Journal.

Walter Jones: I asked Nick to send the data along when the paper’s published. We are certainly
interested in finding problems in the model. That’s a general request which I will make later
today in talking about the database for comparison of models and data. In order to fix problems
in models of that sort, one has to have the relevant data sets which show the discrepancies.

John Hall: As a statistician, I tend to think first of all of statistical checks for goodness of fit of
mean squared deviation. I’m wondering what you might have done to pursue that concept’s
applicability here.

Richard Peacock: We have looked at it. The catch is not so much what technique do I use for a
specific problem, but rather the fact that I have roughly an infinite amount of data that I'd like to
look at and from the offset, don’t know what that data looks like. So if we would like to look at
an arbitrary problem, before we know what that problem looks like, we’d like to know what
appropriate statistical treatment to use. It’s sort of a problem of the cart following the horse: I
can choose an appropriate technique if I know the problem I’m interested in but not necessarily
vice versa.
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